Первая страница
Наша команда
Контакты
О нас

    Главная страница


Сергей Анатольевич Мусский 100 великих нобелевских лауреатов 100 великих




страница32/42
Дата11.01.2017
Размер7.95 Mb.
1   ...   28   29   30   31   32   33   34   35   ...   42

КОНРАД ЛОРЕНЦ

(1903–1989)
Лоренц – один из тех ученых, чьи труды не только определили прогресс науки, но и оказали сильное воздействие на самопонимание, самознание человека.

Конрад Захариас Лоренц родился 7 ноября 1903 года в Альтенберге, близ Вены, в семье преуспевающего врача Адольфа Лоренца. Детство его прошло в богатом особняке, но большую часть времени мальчик проводил, бродя по окрестностям Альтенберга. Тогда, по словам Лоренца, он проникся «чрезмерной любовью к животным». Он собирает коллекцию птиц и млекопитающих, а дома устраивает настоящий зоопарк, где изучал особенности поведения животных.

Получив начальное образование в частной школе, Конрад попал в престижнейшее учебное заведение – «Шоттен гимназиум». Здесь зародилось его увлечение теорией Дарвина и принципами эволюции. Но желание Лоренца посвятить себя биологии и палеонтологии не исполнилось: по настоянию отца Конрад поступил на медицинский факультет Венского университета. Неудивительно, что с особым интересом он слушал лекции, которые читали выдающиеся биологи.

Получив диплом врача, Лоренц не занимался медицинской практикой. Его увлекала новая наука этология – наука о поведении животных и человека как биологического существа. Собственно, он и был одним из основоположников этой науки.

Большое значение для Лоренца имела стажировка в двадцатые годы в Англии под руководством известного биолога и мыслителя Джулиана Хаксли. Вернувшись на родину, он начал с наблюдений за поведением птиц, распространив их впоследствии на весь животный мир. Еще в ранней юности, наблюдая за поведением обитателей своего домашнего зоопарка – уток, Лоренц обнаружил, что животные способны передавать друг другу знания, приобретенные путем обучения. Это явление, ставшее полной неожиданностью для науки того времени, потом было названо импринтингом (запечатлением).

В тридцатые годы Лоренц стал одним из признанных лидеров биологии, и вокруг него сложилась группа учеников. В 1930 году Конрад познакомился со своим будущим учеником и единомышленником, голландским биологом Николасом Тинбергеном. Их взгляды, как сказал потом Лоренц, «совпали до неправдоподобной степени».

Перед самым началом мировой войны они высказали революционную гипотезу о том, что инстинктивное поведение начинается с внутренних мотивов, заставляющих животное находить определенный набор стимулов, обусловленных средой или окружением.

После оккупации Австрии гитлеровской Германией Лоренц остался без работы. И хотя благодаря помощи друзей Конрад получил приглашение в Кенигсбергский университет, престижная кафедра Канта не позволила ему работать с животными.

Во время войны ученого мобилизовали и отправили врачом в военный госпиталь в Белоруссии. В 1944 году, при отступлении немецкой армии, Лоренц попал в плен. Он находился в лагере для военнопленных в Армении. Пленных водили на работы, во время которых он сделал одно из своих решающих открытий: «Наблюдая полудиких коз армянского нагорья, я заметил однажды, как уже при первых отдаленных раскатах грома они отыскивали в скалах подходящие пещеры, целесообразно готовясь к возможному дождю. То же они делали, когда поблизости раздавался грохот взрывов. Я вполне отчетливо помню, что при этом наблюдении я внезапно осознал: в естественных условиях образование условных реакций лишь тогда способствует сохранению вида, когда условный стимул находится в причинной связи с безусловным».

Вряд ли подобное наблюдение вызвало бы столь глубокие выводы у обыкновенного ученого.

Как рассказывает А.И. Федоров: «В 1948 году Лоренц одним из первых в числе австрийцев, насильственно мобилизованных в немецкую армию, был освобожден из плена. В лагере он уже начал писать книгу о поведении животных и человека, окончательный вариант которой, составивший итог всей его жизни, – «Оборотная сторона зеркала». За неимением лучших средств он писал гвоздем на бумаге от мешков из под цемента, пользуясь марганцовкой вместо чернил. Окружающие относились к его занятиям с пониманием. «Профессора», который был старше других пленных, уважало также и лагерное начальство. Когда ему пришло время уезжать, он попросил разрешения взять с собой свою «рукопись». Офицер госбезопасности, от которого это зависело, предложил Лоренцу перепечатать книгу, дав для этого машинку с латинским шрифтом и бумагу. Когда «профессор» это сделал, офицер попросил автора дать честное слово, что в рукописи ничего нет о политике, и разрешил взять ее с собой. Более того, он дал Лоренцу «охранную грамоту», чтобы рукопись не отбирали на этапах! Это кажется невероятным, но Лоренц, лучше нас с вами знавший человеческую природу, не был удивлен. Наконец, усталый, но полный энтузиазма и замыслов, Лоренц возвратился в Альтенберг, к своей семье».

Работы для него на родине не было, и ученый отправляется в ФРГ, где вместе с физиологом Э. фон Гольстом он возглавил институт в Зеевизене, в Баварии. Только теперь он получил достойные условия для исследовательской работы.

В 1963 году вышла книга «Так называемое зло: о природе агрессии», принесшая Лоренцу мировую известность. В этой книге исследователь рассказал о внутривидовой агрессии и ее роли в образовании высших форм поведения.

В конце шестидесятых годов Лоренц по приглашению Австрийской академии наук возвратился на родину. Академия организовала для него Институт сравнительного изучения поведения.

В последние годы жизни Лоренц, как всегда, много работал. Сознавая свою ответственность перед людьми, ученый выступал по венскому радио с популярными лекциями о биологическом положении в современном мире, опубликованными затем под названием «Восемь смертных грехов цивилизованного человечества». Лоренц с тревогой говорил о перенаселении, опустошении жизненного пространства, генетическом вырождение и разрыве с традициями…

В 1973 году вышла в свет окончательная редакция уже упомянутой «Оборотной стороны зеркала» – главной книги Лоренца. Это произведение содержит исключительный по глубине обзор поведения животных и человека и вместе с тем и общую картину современной биологии. Ученый выдвинул интересные гипотезы. Так, в книге изложена гипотеза о происхождении человеческого мышления, а значит, и самого человека. Само происхождение жизни Лоренц также рассматривал как естественное событие, допускающее научное объяснение.

Лоренц говорил о предмете своего исследования: «Этология как отрасль науки возникла тогда, когда при исследовании поведения животных и человека начали применять постановки вопросов и методы, самоочевидные и обязательные со времен Чарлза Дарвина во всех других биологических дисциплинах. Причины такого удивительного запоздания заключаются в истории изучения поведения, которой мы коснемся еще в главе об индоктринировании. Этология рассматривает поведение животных и человека как функцию системы, обязанной своим существованием и своей особой формой историческому ходу ее становления, отразившемуся в истории вида, в развитии индивида и, у человека, в истории культуры. На вопрос о причине: почему определенная система обладает такими, а не другими свойствами, – правомерным ответом может быть лишь естественное объяснение этого хода развития.

В возникновении всех органических форм наряду с процессами мутации и рекомбинации генов важнейшую роль играет естественный отбор. В процессе отбора вырабатывается то, что мы называем приспособлением: это настоящий познавательный процесс, посредством которого организм воспринимает содержащуюся в окружающей среде информацию, важную для его выживания, или, иными словами, знание об окружающей среде».

При этологическом подходе становится очевидным, что каждый акт познания есть взаимодействие между некоторой частью мира, внешней по отношению к организму, и самим организмом или теми его органами, функцией которых является познание.

«Самое удивительное свойство живого – и в то же время больше всего нуждающееся в объяснении – состоит в том, что оно развивается как будто вопреки законам вероятности, в направлении от более вероятного к более невероятному, от более простого к более сложному, от систем с более низкой гармонией к системам с более высокой гармонией, – пишет Лоренц. – Между тем при этом нисколько не нарушаются вездесущие законы физики, и, в частности, второй закон термодинамики сохраняет силу и для живых систем. Все жизненные процессы поддерживаются перепадом рассеивающейся в мире, или, как говорят физики, диссипирующей, энергии. По образному выражению одного из моих венских друзей, жизнь «пожирает отрицательную энтропию».

Все живые системы устроены таким образом, что способны захватывать и накапливать энергию. Отто Ресслеру принадлежит прекрасное сравнение жизни, действующей в потоке диссипирующей мировой энергии, с песчаной отмелью в реке, отложившейся поперек течения и способной задержать тем больше песка, чем больше она уже успела его набрать. Очевидно, что живые системы могут поглощать тем больше энергии, чем больше они уже поглотили ее: в благоприятных условиях живое существо растет и размножается. Много больших животных пожирает, разумеется, больше, чем небольшое число малых. Таким образом, организмы – это системы, получающие энергию в цепи с так называемой положительной обратной связью».

Удивительно, как Лоренц, уже будучи в зрелом возрасте, смог проникнуться идеями основателя кибернетики Винера. Применение кибернетического подхода привело к образованию новой науки: теоретической биологии.

Как отмечает А.И. Федоров: «Всю книгу красной нитью пронизывает «кибернетический подход». Эволюцию уже давно рассматривают как последовательность «мутаций», создающих материал для отбора. Но что такое мутации? Лоренц отбрасывает представление, что мутация – это всегда малое случайное изменение, а весь процесс изменчивости состоит из накопления таких небольших событий. Он видит движущую силу эволюции в образовании новых регулирующих контуров. Когда линейная последовательность процессов, действующих друг на друга в определенном порядке, замыкается в контур, то последний процесс начинает действовать на первый, и возникает новая обратная связь. Такое случайное событие Лоренц называет фульгурацией, от латинского слова, означающего удар молнии. Он представляет себе эволюцию в виде ряда резких скачков, создающих качественно новые свойства живой системы. Таким образом, не только действие уже существующих организмов, но и самое возникновение органического мира получает кибернетическое истолкование».

В 1973 году Лоренцу совместно с Тинбергеном и Карлом фон Фришем была присуждена Нобелевская премия по физиологии и медицине «за открытия, связанные с созданием и установлением моделей индивидуального и группового поведения животных».

Лоренц всегда был оптимистом, он верил в человеческий разум и в человеческие инстинкты, контролируемые разумом. В последней главе книги «Так называемое зло» Лоренц писал: «Я верю… в силу человеческого разума, верю в силу отбора и верю, что разум осуществит разумный отбор».

Умер Лоренц в Альтенбурге 27 февраля 1989 года.

ПРЕМИЯ ПО ХИМИИ
ЯКОБ ВАНТ ГОФФ

(1852–1911)
Вант Гофф получил первую Нобелевскую премию по химии за открытие законов химической динамики и осмотического давления. Этой высокой наградой была отмечена важность молодой области науки – физической химии.

Ученый, пользовавшийся всеобщим уважением, член пятидесяти двух научных обществ и академий, почетный доктор многих высших учебных заведений, Вант Гофф оставил после себя ряд основополагающих теорий, которые и в наши дни имеют непреходящее значение для химии. Представления, идеи и взгляды ученого сыграли большую роль в разработке основ современной минералогии, а также для развития биологии. В историю науки Вант Гофф вошел как один из основателей стереохимии, учения о химическом равновесии и химической кинетике, осмотической теории растворов и химической геологии.

Якоб Хенрик Вант Гофф родился 30 августа 1852 года в Голландии, в Роттердаме, в семье врача. Члены этого семейства неоднократно выбирались бургомистрами, занимали и другие выборные должности в городском самоуправлении.

Уже в начальной школе учителя заметили у мальчика любовь к музыке и поэзии. В дальнейшем он проявил замечательные способности к точным естественным наукам. По окончании школы в 1869 году Якоб поступил в политехникум в Дельфте. И здесь он по уровню знаний значительно превосходил своих сокурсников и потому в 1871 году без вступительного экзамена был принят в Лейденский университет. Позже в этом университете Вант Гофф выдержал кандидатский экзамен.

Но в Лейдене ему не понравилось, и он уехал в Бонн к знаменитому химику Кекуле. После открытия молодым ученым пропионовой кислоты Кекуле порекомендовал своему ученику поехать в Париж к профессору Вюрцу, специалисту по органическому синтезу.

В Париже Якоб сблизился с французским химиком технологом Жозефом Ашилем Ле Белем. Оба с интересом следили за исследованиями в области оптической изомерии, которые проводил Пастер.

В декабре 1874 года Вант Гофф защитил докторскую диссертацию в университете Утрехта и в 1876 году начал преподавательскую деятельность в местной ветеринарной школе. Осенью 1874 года он опубликовал в Утрехте небольшую работу с длинным заглавием: «Предложение применять в пространстве современные структурные химические формулы вместе с примечаниями об отношении между оптической вращательной способностью и химической конституцией органических соединений».

Вант Гофф ввел в науку положения, позволившие с новых позиций рассматривать строение химических соединений. Представление, согласно которому в молекуле метана четыре атома водорода равномерно распределены в пространстве и поэтому можно говорить о тетраэдрической форме молекулы, возвращает нас к взглядам Кекуле. В предложенной Вант Гоффом модели четыре валентности атома углерода направлены к вершинам тетраэдра, в центре которого находится этот атом. Используя такую модель, Вант Гофф предположил, что за счет связи атомов или атомных групп с углеродом тетраэдр может быть несимметричным, и высказал представление об асимметрическом атоме углерода. Он писал: «В случае, когда четыре сродства атома углерода насыщены четырьмя различными одновалентными группами, можно получить два и только два различных тетраэдра, которые представляют собой зеркальное отражение один другого и мысленно никак не могут быть совмещены, то есть мы имеем дело с двумя структурными формулами в пространстве».

Новая статья Вант Гоффа «Химия в пространстве» (1875), где он высказал все эти соображения, послужила началом нового этапа в развитии органической химии. Вскоре он получил письмо от профессора Вислиценуса, одного из известнейших специалистов в этой области: «Я хотел бы получить согласие на перевод Вашей статьи на немецкий язык моим ассистентом доктором Германом. Ваша теоретическая разработка доставила мне большую радость. Я вижу в ней не только чрезвычайно остроумную попытку объяснить до сих пор непонятные факты, но верю также, что она в нашей науке… приобретет эпохальное значение».

Перевод статьи вышел в свет в 1876 году. К этому времени Вант Гофф получил место ассистента физики в Ветеринарном институте в Утрехте.

Большая роль в популяризации новых взглядов Вант Гоффа невольно досталась профессору Г. Кольбе из Лейпцига. В резкой форме он высказал свои замечания по поводу статьи голландского ученого: «Какой то доктор Я.Г. Вант Гофф из Ветеринарного института в Утрехте, видимо, не имеет вкуса к точным химическим исследованиям. Ему значительно удобнее воссесть на Пегаса (вероятно, взятого напрокат в Ветеринарном институте) и провозгласить в своей «Химии в пространстве», что, как ему показалось во время смелого полета к химическому Парнасу, атомы расположены в межпланетном пространстве». Естественно, каждого, кто прочел эту резкую отповедь, заинтересовала теория Вант Гоффа. Так началось ее быстрое распространение в научном мире. Теперь Вант Гофф мог бы повторить слова своего кумира Байрона: «Однажды утром я проснулся знаменитостью». Через несколько дней после опубликования статьи Кольбе Вант Гоффу была предложена должность преподавателя в Амстердамском университете, а с 1878 года он стал профессором химии.

С 1877 по 1896 год Вант Гофф был профессором химии, минералогии и геологии в незадолго до того основанном Амстердамском университете. Всегда рядом с ним была его жена Женни Вант Гофф Меес. Она успевала заниматься не только домом и детьми, но и сумела создать своему мужу настоящую творческую атмосферу.

Интересы Вант Гоффа к поискам наиболее общих закономерностей вновь проявились в его большой работе «Воззрения на органическую химию». Но вскоре ученый перешел к изучению химической динамики. Свои взгляды по этому вопросу он изложил в книге «Очерки по химической динамике» (1884).

Вант Гофф разработал учение о скорости реакций и тем самым создал основания химической кинетики. Он определял скорость реакции как закономерное, но далеко не всегда равномерное изменение концентрации реагирующих веществ в единицу времени. Ему удалось эту закономерность сформулировать в общем математическом виде. Установление зависимости скорости реакции от числа взаимодействующих молекул, а также тесно связанные с этим новые представления Вант Гоффа о природе химического равновесия существенно способствовали значительному прогрессу теоретической химии.

При этом было выяснено, что химическое равновесие, рассматриваемое Вант Гоффом как результат двух противоположно направленных реакций, идущих с одинаковой скоростью (обратимый процесс), зависит от температуры. Представления о химическом равновесии Вант Гофф связал с уже известными в то время двумя началами термодинамики. Важнейшим результатом этой работы был вывод Вант Гоффом математической формулы, в которой была отражена взаимосвязь температуры и теплоты реакции с константой равновесия. Эта закономерность сейчас известна как выведенное Вант Гоффом уравнение изохоры реакции.

Еще одним крупным вкладом Вант Гоффа в теоретическую химию во время амстердамского периода его деятельности было открытие аналогии осмотического и газового давления. На основании сформулированных Раулем эмпирических закономерностей о повышении точки кипения и понижении точки замерзания растворов Вант Гофф в 1885 году разработал осмотическую теорию растворов.

К. Манолов рассказывает в своей книге, как ученый пришел к этому открытию: «Почему бы не представить систему в осмометре «вода – полупроницаемая перегородка – раствор» в виде цилиндра с поршнем? Раствор находится на дне цилиндра, поршень представляет собой перегородку, а над ним – вода. Это же основной метод термодинамики. Принципы газовой термодинамики применимы также к свойствам разбавленных растворов».

Вант Гофф нарисовал цилиндр с поршнем, в пространстве под поршнем он написал «Раствор», а над поршнем – «Вода». Стрелки, направленные из раствора к воде, показывали, что в растворе существует давление, которое стремится поднять поршень вверх.

«Сначала надо рассчитать, какая работа требуется, чтобы поршень под действием осмотического давления передвинулся вверх, но можно и наоборот – выяснить, какая работа необходима, чтобы вернуть поршень вниз, преодолев осмотическое давление».

Вант Гофф провел математические расчеты, заполняя лист формулами, и вот он, конечный результат!

«Невероятно! Зависимость точно такая же, как и для газов! Выражение абсолютно идентично уравнению Клапейрона–Клаузиуса!» Вант Гофф взял лист и повторил все расчеты. «Тот же результат! Законы осмотического давления идентичны газовым законам. Если и константа имеет то же самое значение, тогда можно рассматривать молекулы разбавленного вещества как молекулы газа, представив себе, что растворитель удален из сосуда. Константу можно вычислить по данным Пфеффера». Он снова взял тетрадь, и перо быстро заскользило по бумаге. Для сахарных растворов константа имела такое же значение, что и газовая постоянная. Аналогия была полной».

Вант Гофф установил, что растворенные молекулы производят осмотическое давление, равное тому давлению, которое оказывали бы те же молекулы, если бы они в газообразном состоянии заняли объем, равный объему раствора. Это фундаментальное открытие показало единство законов физики и химии (хотя причины возникновения осмотического давления не были вскрыты).

Вант Гофф оказал также большое влияние на дальнейшее развитие теории диссоциации, изучив в своей работе «Химическое равновесие в системах газов и разбавленных растворов» (1886).

В марте 1896 года Вант Гофф покинул Амстердам, переехав в Берлин по приглашению Прусской академии наук. В соответствии с предложением Макса Планка и Эмиля Фишера для Вант Гоффа была создана специальная исследовательская лаборатория в Академии наук, а сам ученый был сразу же избран ее действительным членом и почетным профессором Берлинского университета.

В Германии он провел обширные экспериментальные и теоретические работы, которые помогли установить условия образования месторождений калийных солей и создать рациональную технологию их переработки.

Ученый был в Америке, когда узнал, что получил первую Нобелевскую премию по химии «в знак признания огромной важности открытия им законов химической динамики и осмотического давления в растворах». 10 декабря 1901 года в Стокгольме собрались выдающиеся ученые мира. Торжественная церемония в празднично освещенном зале Шведской Академии наук была действительно незабываема.

Вечером на банкете Вант Гофф получил возможность выразить свою сердечную благодарность за большую честь, которой его удостоили, Комитету по Нобелевским премиям в области химии и лично его председателю, профессору П. Клеве.

Представляя ученого от имени Шведской королевской академии наук, С.Т. Однер назвал ученого основателем стереохимии и одним из создателей учения о химической динамике, а также подчеркнул, что исследования Вант Гоффа «внесли значительный вклад в замечательные достижения физической химии».

В последующие дни, согласно требованиям Нобелевского комитета, награжденные должны были выступить с сообщениями о научных достижениях, за которые им была присуждена премия. Вант Гофф в своей лекции говорил о теории растворов.

Ученый продолжал работать, но давняя тяжелая болезнь помешала Вант Гоффу глубже изучить синтетическое действие ферментов в живом растительном организме.

Умер Вант Гофф 1 марта 1911 года в Берлине.
ЭМИЛЬ ФИШЕР

(1852–1919)
Известный химик Рихард Вильшеттер считал Фишера «не имеющим равных классиком, мастером органической химии, как в области анализа, так и в области синтеза, а в личностном отношении прекраснейшим человеком». В его честь Германское химическое общество учредило медаль Эмиля Фишера. Немецкий ученый создал крупную научную школу. Среди его учеников – О. Дильс, А. Виндаус, Ф. Прегль, О. Варбург.

Немецкий химик органик Герман Эмиль Фишер родился 9 октября 1852 года в Ойскирхене, маленьком городке вблизи Кельна, в семье Лоренца Фишера, преуспевающего коммерсанта, и Юлии Фишер (в девичестве Пенсген). До поступления в государственную школу Вецлара и гимназию Бонна он в течение трех лет занимался с частным преподавателем. Весной 1869 года он с отличием окончил боннскую гимназию.

Хотя Эмиль надеялся на академическую карьеру, он согласился в течение двух лет работать в отцовской фирме, но проявил к делу так мало интереса, что весной 1871 года отец направил его в Боннский университет. Здесь он посещал лекции известного химика Кекуле, физика А. Кундта и минералога П. Грота. В значительной степени под влиянием Кекуле, уделявшего мало внимания лабораторным занятиям, интерес к химии у Фишера стал ослабевать, и он потянулся к физике.

В 1872 году по совету своего кузена, химика Отто Фишера, он перешел в Страсбургский университет. В Страсбурге под влиянием одного из профессоров, молодого химика органика Адольфа Байера, у Фишера вновь возник интерес к химии. Вскоре Фишер окунулся в химические исследования и был замечен после открытия фенилгидразина (маслянистой жидкости, используемой для определения декстрозы), вещества, которое было им использовано позднее для классификации и синтеза сахаров. После получения докторской степени в 1874 году он занял должность преподавателя в Страсбургском университете.

Когда в следующем году Байер получил пост в Мюнхенском университете, Фишер дал согласие стать его ассистентом. Финансово независимый и освобожденный от административных и педагогических обязанностей, Фишер смог сконцентрировать все свое внимание на лабораторных исследованиях. В сотрудничестве со своим кузеном Отто он применил фенилгидразин для изучения веществ, используемых в производстве органических красителей, получаемых из угля. До проведения исследований Фишером химическая структура этих веществ определена не была.

Открытие, синтез и применение фенилгидразина Фишер позднее описал в своей докторской диссертации. Несмотря на то что Фишер в течение двенадцати лет страдал от последствий токсического действия фенилгидразина, он назвал его своей «первой и самой продолжительной химической привязанностью».

В 1878 году Эмилю Фишеру было присвоено ученое звание доцента. На следующий год он уже заведовал аналитическим отделением в Мюнхенском университете. Тогда же Эмиль и Отто Фишер установили строение розанилина и парарозанилина и доказали их связь с трифенилметаном, для получения которого предложили новый способ – диазотирование паралейканилина.

С 1882 года Эмиль провел систематическое исследование соединений пуриновой группы. При обработке органических кислот пятихлористым фосфором были получены соответствующие хлориды, которые обладали повышенной реакционной способностью и могли легко превращаться в производные органических кислот. Так, Фишер сумел получить из мочевой кислоты трихлорпурин, а при последующей его обработке едким кали и йодистым водородом – ксантин. При метилировании ксантина Фишер получил кофеин – бесцветное, горькое на вкус кристаллическое вещество, которое содержится в зернах кофе и листьях чая. Синтезированное вещество было полностью идентично природному кофеину, оно оказывало такое же возбуждающее действие, как и природный продукт.

Успехи Фишера постепенно стали известны и получили признание за пределами Германии. В 1883 году ему предложили возглавить исследовательскую лабораторию в компании «Баденские анилиновые и содовые фабрики» с фантастическим годовым жалованием в 100000 марок. Однако Фишер отклонил это предложение, так как для него «…была привлекательнее… академическая деятельность, предоставляющая полную свободу для научной работы».

Эмиль принял предложение занять должность профессора в Эрлангене. На пути в этот город он разговорился с профессором Якобом фон Герлах и его дочерью Агнес. Фишер тогда и подумать не мог, что в конце февраля 1888 года Агнес станет его женой. В конце того же года у Фишеров родился сын. По немецкому обычаю ему дали несколько имен – Герман Отто Лоренц.

В 1885 году Фишер стал профессором Вюрцбургского университета. Несмотря на перемены, которые внесли в жизнь Фишера женитьба и рождение ребенка, интенсивная исследовательская деятельность его не прекращалась. Разработав и усовершенствовав ряд методов синтеза и анализа органических соединений, великий мастер эксперимента сумел добиться больших успехов.

Исследование сахаров Фишер с учениками начал в 1884 году и продолжал до 1899 го. Путем конденсации глицеринового альдегида Фишер и Тафель получили смесь сахарообразных веществ, из которой в 1890 году с помощью фенилгидразина выделили альфа– и бета акрозу.

После синтеза акрозы, сотрудники Фишера начали осуществлять сложные и многоступенчатые синтезы природных сахаров – маннозы, фруктозы и глюкозы. Эти успехи принесли Фишеру и международное признание. В 1890 году Английское химическое общество наградило его медалью Дэви, а научное общество в Упсале избрало своим членом корреспондентом. В том же году Немецкое химическое общество пригласило ученого выступить в Берлине с докладом об успехах в области синтеза и изучения сахаров.

Как указывается в книге «Биографии великих химиков»: «Исследования природы сахаров позволили выяснить строение моносахаридов. Фишер и другие химики показали, что моносахариды можно представить как продукты окисления многоосновных спиртов. Исходя из этого, можно разделить моносахариды на альдозы и кетозы. Фишер открыл взаимодействие моносахаридов с фенилгидразином и впервые ввел эту одну из важнейших реакций в химию сахаров. Это позволило Фишеру объяснить пространственное строение моносахаридов и тем самым продолжить разработку систематики углеводов, углубляя в то же время стереохимические представления. Циангидрин (оксинитрил) ученый использовал также для своих замечательных синтезов сахаров».

Продолжая работать с соединениями пуриновой группы, Фишер исследовал такие соединения, как кофеин, теобромин (алкалоид) и компоненты экскрементов животных, в частности, мочевую кислоту и гуанин, который, как он обнаружил, получается из бесцветного кристаллического вещества, названного им пурином. К 1899 году Фишер синтезировал большое число производных пуринового ряда, включая и сам пурин (1898). Пурин – важное соединение в органическом синтезе, так как оно, как было открыто позднее, является необходимым компонентом клеточных ядер и нуклеиновых кислот.

В 1892 году Фишер стал директором Химического института Берлинского университета и занимал этот пост до самой смерти. Научные успехи окрыляли Фишера, но все больше и больше удручали семейные невзгоды. Мальчики часто болели, а вскоре после рождения третьего сына в 1895 году жена умерла от менингита.

Но горе не сломило ученого. Поручив заботу о сыновьях преданной экономке и опытным учителям, Фишер с головой ушел в работу. Расширив область исследования от сахаров до ферментов, он открыл, что ферменты реагируют только с веществами, с которыми они имеют химическое родство. Проводя исследования с белками, он установил число аминокислот, из которых состоит большинство белков, а также взаимосвязь между различными аминокислотами.

В 1902 году Фишеру была вручена Нобелевская премия по химии «в качестве признания его особых заслуг, связанных с экспериментами по синтезу веществ с сахаридными и пуриновыми группами». Открытие Фишером гидразиновых производных, как оказалось, явилось блестящим решением проблемы получения сахаров и других соединений искусственным путем. Более того, его метод синтеза гликозидов внес определенный вклад в развитие физиологии растений. Говоря об исследованиях сахаров, Фишер в нобелевской лекции заявил, что «постепенно завеса, с помощью которой природа скрывала свои секреты, была приоткрыта в вопросах, касающихся углеводов. Несмотря на это, химическая загадка жизни не может быть решена до тех пор, пока органическая химия не изучит другой, более сложный предмет – белки».

Продолжая изучение строения белковых тел, Фишер синтезировал пептиды (комбинации аминокислот) и классифицировал более сорока типов белков, основываясь на количестве и типах аминокислот, образовавшихся при гидролизе (химическом процессе разрушения, включающем расщепление химической связи и присоединение элементов воды). В 1907 году ученый получил синтетически октадекапептид, построенный из восемнадцати молекул различных аминокислот.

В последние годы жизни кроме белков Фишер изучал дубящие вещества и депсиды – эфирообразные соединения двух молекул ароматических оксикарбоновых кислот.

Свои открытия ученый оформил в нескольких монографиях: «Исследования аминокислот» (1906), «Введение в изготовление органических препаратов» (1906), «Исследование углеводов и ферментов» (1909–1919), «Полипептиды и белки» (1919).

В 1912 году Немецкое химическое общество учредило медаль Эмиля Фишера, которой раз в два года награждаются ученые за выдающиеся исследования по органической химии. В том же году для исследовательской работы Фишера в Берлин Далеме была построена самая большая в мире химическая лаборатория. В 1914 году он получил оборудование для создания Института исследований угля кайзера Вильгельма в Мюльгейме.

С началом Первой мировой войны для Фишера наступили тяжелые дни: из трех сыновей остался в живых лишь один – старший сын Герман, ставший профессором биохимии Калифорнийского университета в Беркли.

К личным переживаниям присоединились трудности с исследовательской деятельностью: работа в лаборатории была приостановлена из за того, что не хватало химикатов. Тяжелая, неизлечимая болезнь все чаще давала о себе знать и отнимала последние силы. После длительных контактов в лаборатории с фенилгидразином у Фишера образовались хроническая экзема и желудочно кишечные нарушения. Фишер отчетливо осознавал, что его ждет, но он не страшился смерти. Он спокойно привел в порядок все свои дела, закончил работу над рукописями, успел завершить и свою автобиографию, хотя и не дождался ее выхода в свет. Эмиль Фишер скончался 15 июля 1919 года.
1   ...   28   29   30   31   32   33   34   35   ...   42

  • ПРЕМИЯ ПО ХИМИИ
  • ЭМИЛЬ ФИШЕР