Первая страница
Наша команда
Контакты
О нас

    Главная страница


От возрождения до канта




страница9/29
Дата13.02.2018
Размер4.23 Mb.
ТипУчебное пособие
1   ...   5   6   7   8   9   10   11   12   ...   29
Тихо Браге: ни старая расстановка Птолемея, ни нововведения великого Коперника Тихо Браге: улучшение инструментария и техники наблюдений Великий труд Коперника появился в 1543 г. В 1609 г. Кеплер опубликовал свою работу о Марсе, которая стала вторым мощным ударом по традиционной космологии: он доказывал, что орбиты планет не круговые, а эллиптические. Однако между Коперником и Кеплером был еще один ученый, оказавший значительное влияние на ход развития астрономии: речь идет о датчанине Тихо Браге. Тихо (латинизированное датское имя Тюге) родился три года спустя после смерти Коперника, в 1546 г., а умер в 1601 г. И если Коперник был самым известным астрономом первой половины XVI в., то Тихо Браге стал авторитетом среди астрономов второй половины века. Его великим покровителем являлся король Дании Фредерик II, который не только назначил ему жалованье, но и подарил остров Вен в Копенгагенском проливе. На этом острове Браге построил замок, обсерваторию, лаборатории, частную типографию; там он работал в окружении многочисленных помощников с 1576 по 1597 г. и собрал огромное количество материала — результаты точных наблюдений. После смерти Фредерика II Браге в 1599 г. перебрался в Прагу, на службу к императору Рудольфу II, пригласившему также молодого Кеплера, который после смерти Браге занял место придворного математика. В отличие от Коперника, Тихо Браге был прежде всего виртуозным наблюдателем астрономических явлений: усовершенствовал технику наблюдений и измерений и достиг высокого уровня точности; спроектировал и создал новые инструменты — более крупных размеров, более устойчивые и с улучшенной градуировкой. Но главное — он ввел практику наблюдения планет во время их движения по небу. Это было новым, выдающимся явлением в астрономии: все 186 Научная революция предыдущие астрономы проводили наблюдения только в тех случаях, когда планеты находились в наиболее удобных положениях. Кроме того, если вспомнить, что Браге вел наблюдения невооруженным глазом, мы должны признать, что его достижения в этой области явились поистине выдающимися. «Наблюдения, осуществленные с помощью современных телескопов, показывают, что результаты наблюдений Браге по определению положения неподвижной звезды имеют степень точности до единицы или даже еще большую; это выдающийся результат для наблюдений невооруженным глазом» (Кун). Благодаря этому Тихо Браге и его сотрудники смогли решить целую серию астрономических проблем, возникавших как раз из-за неточностей предыдущих наблюдений. Тихо Браге отрицает существование материальных сфер В 1577 г. Браге изучает движение одной кометы; ему удается определить ее параллакс (уклонение) и доказать таким образом, что, вращаясь вокруг Солнца по орбите, внешней по отношению к Венере, и имея очень маленький параллакс, она находится дальше Луны и ее траектория пересекает орбиты планет. Результат приводил в замешательство: он означал, что кристаллические сферы традиционной космологии, воспринимаемые как физически реальные и предназначенные для перемещения планет, в действительности не существуют. Таким образом, рушилась еще одна часть старого представления о мире. «По моему мнению, — пишет Браге Кеплеру, — сферы... должны быть исключены из небес. Я понял это благодаря кометам, появлявшимся в небе. Они не следуют законам ни одной из сфер, но, скорее, действуют вопреки им. Движением комет четко доказано, что небесная машина — это не твердое тело, непроницаемое, составленное из различных реальных сфер, как до сих пор думали многие, но текучее и свободное, открытое во всех направлениях, которое не чинит абсолютно никаких препятствий свободному бегу планет, регулируемому законодательной мудростью Бога без какого-либо механизма, вращающего реальные сферы. Таким образом, нет никаких сфер: они не существуют реально на небесах, но допускаются только в целях облегчения преподавания и изучения». Заметим: материальные сферы, от которых не мог еще отказаться даже Коперник, исчезали. На их место пришли орбиты, в нашем понимании — траектории. Нововведения Тихо Браге на этом не закончились. Он подверг сомнениям также старую идею Тихо Браге 187 совершенной естественности кругообразных небесных движений. Вызовом догме явилась идея, что комета имеет «овальную» орбиту, — еще одна огромная брешь в традиционной космологии. Таковы явно революционные нововведения Тихо Браге. Столкнувшись с огромным множеством противоречивых систем, он усовершенствовал технику и инструменты с целью получить более точные и надежные данные. На базе многочисленных точных наблюдений ему удалось опровергнуть две базовые идеи традиционной космологии. Но оставалась открытой наиболее важная, жгучая проблема: кто же прав — Птолемей или Коперник Для ее решения Тихо Браге из внимательного и скрупулезного наблюдателя должен был превратиться в способного теоретика. Ни Птолемей, ни Коперник В течение всей своей жизни Тихо Браге был оппонентом Коперника, и «его огромный авторитет препятствовал обращению астрономов к новой доктрине» (Кун). Конечно, Браге прекрасно понимал, что «нововведения, принадлежащие великому Копернику», позволяют «научным путем избежать всего того, что в птолемеевской картине оказывается избыточным и нелогичным, притом математические принципы остаются нерушимыми...». Все же Браге был еще во власти аристотелевского стиля мышления и принимал доказательства невозможности движения Земли, приведенные Птолемеем и опровергнутые Оресмом и Коперником. Вот некоторые из его контраргументов: «С того момента, как [нововведение Коперника] устанавливает, что большое, ленивое и малоподвижное тело Земли подвержено регулярному (более того, тройному) движению, как и прочие эфирные созвездия, оно выступает не только против принципов физики, но и против авторитета Священного Писания, которое утверждает, в разных своих частях, неподвижность Земли, не говоря уж об обширнейшем пространстве между орбитой Сатурна и восьмой сферой, которое эта доктрина оставляет пустым вплоть до звезд, и о других неудобствах, сопровождающих эту спекуляцию». В переписке, которую Тихо Браге вел с немецким астрономом Кристофером Ротманном, последователем идей Коперника (астрономом ландграфа Гессена Вильгельма IV), он приводит аргумент, который впоследствии станет стандартным возражением: если верно, что Земля вращается с запада на восток, то — в этом непоколебим Браге — расстояние, которое пролетает ядро, выпущенное из пушки в запад- 188 Научная революция ном направлении, должно быть больше, нежели расстояние, преодолеваемое ядром, выпущенным из той же пушки в направлении, противоположном движению первого ядра, а во втором — Земля и ядро двигались бы в одном направлении, и, как результат, расстояние, преодолеваемое ядром в этом последнем случае, должно было бы быть более коротким, чем в случае, когда оно летело бы в западном направлении. Но поскольку на практике этого нет, то Земля, заключает Браге, неподвижна. Следовательно, коперниканская система неверна — таково заключение Тихо Браге. Но неверна также и система Птолемея, ибо «старое распределение небесных орбит недостаточно когерентно и столь многочисленные и большие эпициклы избыточны, чтобы объяснить поведение планет относительно Солнца, их кажущееся обратное движение и остановки, неравенство...». Система Тихо Браге (из книги: Томас Кун. Коперниканская революция. Турин, 1972) Тихо Враге 189 Система Тихо Браге: реставрация с семенами революции Итак, ни Птолемей, ни Коперник. И тогда, пишет Браге, «поняв, что обе эти гипотезы допускают немалую долю абсурда, я стал серьезно размышлять, нельзя ли создать такую, которая не контрастировала бы ни с математикой, ни с физикой, которая не избегала бы проверки теологией и в то же время удовлетворяла бы небесным наблюдениям». И вот «наконец, почти неожиданно, — продолжает Браге, — мне пришло в голову, что порядок небесных вращений должен быть способным предотвратить любую случайность, могущую вызвать все эти непоследовательности». Итак, перед нами — система Тихо Браге. В ней Земля находится в центре Вселенной, в центре орбит Солнца, Луны и неподвижных звезд; Солнце же находится в центре орбит пяти планет. Чтобы получить представление о системе Браге, достаточно взглянуть на рисунок, где помимо прочего можно увидеть, что орбиты пересекаются во многих точках, теряя свою характеристику материальных субстанций. На другом рисунке представлена схема Коперника, что позволяет увидеть различия между этими двумя системами. Система Коперника (из книги: Паоло Росси. Научная революция от Коперника до Ньютона. Турин, 1973) 190 Научная революция 191 Иоган Кеплер: переход от «круга» к «эллипсу» и математическая систематизация теории Коперника Кеплер — преподаватель в Граце: Mysterium cosmographicum Кеплер родился 27 декабря 1571 г. в Вейле, недалеко от Штутгарта. Его отец Генрих служил герцогу Брауншвейгскому, мать Катерина Гульденман была дочерью трактирщика. Иоганн родился «семимесячным» (как он писал о себе) и не отличался крепким здоровьем. В детстве переболел оспой, которая оставила след на всю жизнь. Оставив сына на попечении дедушки с бабушкой, родители отправились с войском герцога Альбы сражаться с бельгийцами. Вернувшись с войны в 1575 г., родители Кеплера открыли трактир в Эльмендингене, в Бадене. Маленький Кеплер начал помогать родителям — сначала мыть стаканы в трактире, затем выполнять различные работы по дому, затем в поле. В 1577 г. он начал посещать школу в Леонберге, обнаружив способности к учебе, и родители решили послать его в 1584 г. в семинарию в Адельсберг. Затем он перебрался в семинарию в Маульбронне, после чего, спустя четыре года, поступил в университет в Тюбингене. Там он занимался у астронома и математика Михаила Мёстлина, который убедил его в достоинствах системы Коперника. В эти годы разгоралась вражда между католиками и протестантами. Будучи протестантом, Кеплер считал, что взаимные преследования религиозных группировок, убеждение, что их действиями руководит сам Господь, упования на слепую веру, и, наконец, надменность, с которой они осуждали последователей евангельского духа и свободы — все это абсурдно и пагубно. В возрасте 22 лет Кеплер оставляет занятия теологией и мысль о церковной карьере. Он принимает предложение преподавать математику и этику в гимназии в Граце. В его обязанности входило также составление календаря для Штирии на 1594 г., прогнозов — например о степени суровости зимы, о крестьянских волнениях и т. д. В 1596 г. Кеплер опубликовал «Предвестник, или Космографическая тайна» (Prodromus sive Mysterium cosmographicum), в котором соотносил «пять правильных твердых тел» — куб, тетраэдр, додекаэдр, октаэдр и икосаэдр (соответственно четырех-, двенадцати-, восьми-, двадцатигранник) с числом известных в то время планет и 192 Научная революция Иоган Кеплер расстоянием между ними. Книга, вышедшая с предисловием Мёстлина, была тут же послана Тихо Браге и Галилею. Браге предложил Кеплеру рассмотреть возможную связь между открытиями, описанными в работе Prodromus, и системой Тихо. 4 августа 1597 г. из Падуи пришел ответ Галилея Кеплеру, в котором среди прочего читаем: «Я также благодарю тебя, и особенным образом, за то, что ты удостоил меня доказательством твоей дружбы. В твоей работе я пока познакомился только с предисловием, из которого, однако, понял твои намерения и могу поистине порадоваться, что имею такого союзника в поисках истины. Достойно сожаления, что столь редки те, кто следует в своих философских размышлениях безошибочным путем. Но здесь не место оплакивать ничтожность нашего времени, а, скорее, следует мне поздравить самого себя с обретением столь убежденного защитника истины. Я много работал над тем, чтобы доказать, сколь ошибочны аргументы, выдвинутые против гипотезы Коперника, но по сию пору не решился ничего опубликовать, напуганный случившимся с Коперником, нашим учителем, который, хотя и обрел бессмертную славу среди немногих, был, однако, осмеян и освистан бесконечным числом всех прочих — столь огромно число глупцов. Я бы осмелился обнародовать свои размышления, будь таких, как ты, больше, но поскольку это не так, я вынужден отложить». Иоган Кеплер 193 Кеплер — придворный математик в Праге: «Новая астрономия» и «Диоптрика» В 1597 г. Кеплер женился на Барбаре Мюллер фон Мулек, богатой молодой вдове 23 лет. Тем временем, после визита эрцгерцога Фердинанда к Папе Клименту VIII, все некатолики были изгнаны из Штирии. Кеплер пытается с помощью своего старого учителя Мёстлина получить место в университете Тюбингена, но это ему не удается. Однако неожиданно приходит другое решение вопроса: Браге приглашает Кеплера нанести ему визит в замок Бенатек, в окрестностях Праги. 1 августа 1600 г. более тысячи человек были изгнаны из Штирии. Кеплер пишет Мёстлину, что он никогда не мог бы представить, что по религиозным мотивам и именем Христа можно принести людям столько страданий, лишив их дома, друзей, всего имущества. В Праге Тихо Браге предлагает Кеплеру стать его помощником. Однако очень скоро, 24 октября 1601 г., Браге в возрасте 55 лет умер. Император Рудольф II назначает Кеплера «имперским математиком», с жалованьем вполовину меньшим, нежели получал Браге, и вменяет ему в обязанность завершить работу над «Рудольфинскими таблицами» (Tabulae rudolphinae). В 1604 г. Кеплер публикует труд по геометрической оптике «Паралипомены к Вителлию» (Ad Vitellionem paralipomena), который стал вехой в истории науки. Работа состоит из 11 глав. В ней рассматриваются и совершенствуются идеи, высказанные ранее Альгазеном (Ибн аль Хайсамом) и Вителлием, очень схожие с концепцией Франческо Мавролика (1494—1577). Большое значение имеет пятая глава этого труда: «... в ней впервые природа зрения объясняется тем, что световой раздражитель, достигая сетчатки глаза, дает изображение; спроецированное, оно оказывается перевернутым. Но такое переворачивание не дает отрицательного эффекта, ибо проблема заключается в определении правила, в соответствии с которым реагирует глаз, располагая изображение, когда он получает определенные раздражения. Правило следующее: когда изображение внутри глаза находится внизу, видимая фигура должна быть сверху и наоборот; подобным образом, когда изображение на сетчатке — справа, значит, видимая фигура — слева и наоборот» (В. Ронки). Кроме того, в первой главе Кеплер дает принципиально новое определение света: 1) «Свету присуще свойство распространяться от источника на большое расстояние»; 2) «Распространение света из любой точки происходит по бесчисленному множеству прямых линий»; 3) «Свет сам по себе может распространяться до 194 Научная революция Иоган Кеплер 197 Кеплер доводит это число до 1005. Благодаря таблицам «более века астрономы могли рассчитывать с достаточной точностью, невозможной до Кеплера, положение Земли и других планет относительно Солнца» (Дж. Абетти). В 1628 г. Кеплер снова в Праге, оттуда перебирается в Саган — маленький городок в Силезии, между Дрезденом и Бреслау — на службу к Альбрехту Валленштейну, герцогу Фридляндии. Он обещал Кеплеру уплатить двенадцать тысяч флоринов долга за его прошлую работу. Кеплер, со своей стороны, должен был составить эфемериды до 1626 г. Кеплер решает отправиться в Ратисбону (Регенсбург), чтобы получить от сейма задолженность по жалованью. Путешествие на худосочном осле (от которого Кеплер по приезде поспешил избавиться, продав за два флорина) было ужасным. Кеплер тяжело заболел, у него поднялась температура. Применили кровопускание, но ничто не помогало. Он умер 15 ноября 1630 г., вдалеке от дома и близких, на пятьдесят девятом году жизни. Кеплера похоронили за городскими стенами, на кладбище Св. Петра, поскольку лютеранам было отказано в погребении на городском кладбище. Похороны прошли торжественно. Погребальная речь заканчивалась стихом из Евангелия от Луки (XI, 28): «Блаженны слышащие слово Божие и соблюдающие его». «Космографическая тайна»: в поисках божественного математического порядка небес Тихо Браге был всегда противником Коперника, Кеплер — его сторонником, «славя Солнце с энтузиазмом возрожденческого неоплатонизма» (Кун). Кеплер был математиком-неоплатоником и неопифагорейцем, его вера в гармонию мира не сочеталась с системой Браге. Природа создана в соответствии с математическими правилами, и обязанность ученого — понять их. Кеплер считал, что он отчасти эту обязанность выполнил, когда в 1596 г. опубликовал «Космографическую тайну». После подробного, с детальными чертежами, изложения доказательств в защиту системы Коперника он утверждает, что число планет и размеры их орбит могут быть познаны после уяснения связи между планетными сферами и пятью правильными многоугольниками (солидусами), еще называемыми «платоновскими» или «космическими», — куб, тетраэдр, додекаэдр, икосаэдр и октаэдр (куб, четырех-, двенадцати-, двадцати- и восьмиугольник). Эти фигуры, как легко догадаться, характеризуются тем, что поверхности каждого из этих тел одинаковы и равносто- 198 Научная революция ронни. Уже со времен античности было известно, что подобными характеристиками обладают только упомянутые тела. Кеплер в своей работе утверждает, что если бы сфера Сатурна была описана в виде куба, в которую вписана сфера Юпитера, и если бы тетраэдр был вписан в сферу Юпитера, а в него вписана сфера Марса и так далее, чередуя три других солидуса и другие три сферы, тогда можно было бы убедиться в соотносительных размерах всех сфер и понять причину, почему существует только шесть планет. Кеплер пишет: «Орбита Земли является мерой всех остальных орбит. Опиши вокруг нее додекаэдр, тогда сфера, которая, в свою очередь, опишет его, будет сфера Марса. Вокруг сферы Марса опиши тетраэдр, тогда сфера, которая его обнимет, будет сфера Юпитера. Вокруг сферы Юпитера опиши куб, — заключающая его сфера будет сферой Сатурна. В орбиту Земли впиши икосаэдр, — вписанная в него сфера будет сферой Венеры, в сферу Венеры впиши октаэдр, — в него будет вписана сфера Меркурия. Так ты поймешь причину числа планет». Бог — математик, и работа Кеплера заключалась в поиске разгадки геометрической и математической гармонии мира. Он верил, что значительную часть этого труда ему удалось выполнить, открыв много закономерностей, хотя в будущем останутся в основном лишь три его закона о планетах. Во всяком случае, «он был убежден, что структура мира может быть определена математическим путем, ибо при сотворении мира Бог руководствовался математическими соображениями, что простота — знак истины, а математическая простота идентифицируется с гармонией и красотой. Он использовал то удивительное обстоятельство, что существует как раз пять многоугольников, соответствующих требованиям соразмерности, которые, конечно же, должны каким-то образом соотноситься со структурой вселенной: все это — недвусмысленные признаки пифагорейско-платоновской концепции мира, проступающие здесь особенно четко. Дискурс «Тимея» вновь Иоган Кеплер 199 204 Галилео Галилей совершенствует и настраивает. Свои выдающиеся астрономические открытия он излагает в «Звездном вестнике» В 1610 г., после чего эрцгерцог Козимо II Медичи назначил Галилея «экстраординарным математиком — исследователем города Пизы» — без обязанностей Галилео Галилей 205 постоянного присутствия на службе или занятиях — и «философом светлейшего герцога». Во Флоренции он продолжает астрономические исследования, но приверженность идеям Коперника начинает приносить ему первые неприятности. Между 1613 и 1615 гг. он пишет четыре знаменитых «коперниканских письма» об отношении науки и веры: одно — своему ученику, монаху-бенедиктинцу Бенедетто Кастелли; два — монсиньору Пьеру Дини и одно — великой герцогине Христине Лотарингской. Став жертвой доноса в Священную канцелярию и обвиненный в ереси из-за приверженности учению Коперника, в 1616 г. он предстал перед судом в Риме. Затем последовал запрет на преподавание, пока Галилей не отречется от теорий, поставленных ему в вину. В результате полемики с иезуитом Горацио Грасси о природе комет рождается эссе «Пробирных дел мастер», опубликованное в 1623 г. Сформулированная в ней теория комет впоследствии окажется ошибочной (Галилей утверждал, что кометы — это световые отблески на парах земного происхождения), однако в ней уже закладываются некоторые философско-методологические основания концепции Галилея. В 1623 г. на папский престол взошел под именем Урбана III кардинал Маттео Барберини, друг Галилея, оказывавший поддержку ему и Кампанелле. С возродившейся надеждой Галилей пишет «Диалог о двух главнейших системах мира». Несмотря на предосторожности автора, не составляло большого труда понять, что новое сочинение активно защищает учение Коперника. В 1633 г. Галилей вновь подвергся суду, был осужден и принужден к клятвенному отречению. Пожизненное заключение ему сразу же заменили на ссылку, вначале в поместье его друга Асканио Пикколомини, архиепископа Сиены, который обращался с ним крайне уважительно, а впоследствии в его дом в Арчетри, где он не мог ни с кем встречаться и ничего писать, не получив предварительно на то разрешения. В уединении Галилей пишет свою наиболее оригинальную и выдающуюся работу «Рассуждения и математические доказательства по поводу двух новых наук», которые появятся в Лейдене в 1638 г. Позже Лагранж напишет: «Динамика — наука, полностью обязанная ученым новой эпохи. Галилей стал ее крестным отцом... сделал первый важный шаг, открыв таким образом дорогу, новую и просторную, развитию механики как науки». Утешением Галилею в Арчетри было присутствие в течение небольшого периода времени дочери — монахини Марии Челесты (в миру Вирджинии). Она умерла 2 апреля 1634 г. в возрасте 33 лет. В письме к брату своей 206 Научная революция невестки Джери Боккинери, служащему канцелярии правительства эрцгерцога, Галилей писал: «...безграничная печаль и меланхолия, абсолютная потеря аппетита, я ненавистен сам себе и постоянно слышу, как моя дорогая дочурка зовет меня». Об отношениях Галилея с дочерью, женщиной утонченнейших чувств и «высокого интеллекта», говорят ее письма, посланные отцу в Рим после его осуждения в 1633 г. Галилей не хотел, чтобы весть о его осуждении дошла до дочери. Но скрыть это не удалось. Узнав о случившемся, Мария Челеста 30 апреля отправляет отцу письмо: «Отец, я решила написать Вам сейчас, чтобы Вы знали, что Я полностью разделяю Ваши горести, что, я надеюсь, должно принести Вам некоторое облегчение: я ни с кем не делилась, желая, чтобы все это осталось при мне...» В начале июля она пишет ему еще раз: «Дражайший синьор отец, теперь более, чем когда-либо, пришло время благоразумию, данному Вам Господом Богом, для перенесения ударов с той силой духа, которой требуют религия, профессия и Ваш возраст. Благодаря большому жизненному опыту Вы вполне можете понять фальшь и непостоянство всего в этом мире и не придавать большого значения этим бурям, надеяться, что они скоро улягутся и сменятся на противоположное к Вашему успокоению». И еще, 16 июля: «Когда Ваша милость были в Риме, я мысленно говорила себе: если я заслужу такую милость, что он приедет в Сиену, с меня будет довольно, я cмогу сказать, что он почти в моем доме; а теперь я страстно желаю, чтобы Вы были еще ближе». Оправившись от горя, Галилей возвращается к занятиям наукой и пишет свои великие «Рассуждения». В конце жизни Галилей потерял зрение, болезни не оставляли его. В присутствии своих учеников Винченцо Вивиани и Эванджелиста Торричелли, ночью 8 января 1642 г., как мы читаем в «Историческом повествовании» Вивиани, «с философской и христианской стойкостью Галилей отдал душу Создателю. Она отправилась, можно думать, наслаждаться и восхищаться теми вечными нетленными чудесами, которые с помощью хрупкого механизма, ненасытно и нетерпеливо, хотел приблизить Галилей к глазам смертных». Галилей и вера в подзорную трубу В 1597 г. в письме к Кеплеру Галилей сообщает, что он примкнул «уже много лет назад... к учению Коперника»; «отталкиваясь от него, я вскрыл причины многих природных явлений, доселе, вне всякого сомнения, необъяснимых. Я уже подготовил в письменном Галилео Галилей 207 виде много доказательств, опровержений контраргументов, но до сих пор не решался опубликовать их, напуганный судьбой Коперника, нашего учителя». В 1609 г., направив подзорную трубу в сторону неба, Галилей начинает накапливать доказательства, которые, с одной стороны, наносят точные и решительные удары по картине мира Аристотеля—Птолемея, а с другой — устраняют все, мешающее принятию системы Коперника, и таким образом усиливает поддержку. Весной 1609 г. Галилей узнает, что «некий Фьямминго сконструировал прибор, благодаря которому наблюдаемые объекты, хотя и очень удаленные от глаз наблюдателя, были четко видны, как если бы находились на близком расстоянии». Вскоре он получает подтверждение этому в известии из Парижа, от своего бывшего ученика Джакопо Бадовере, «и это стало причиной, подтолкнувшей меня полностью отдаться поискам средств, с помощью которых я бы смог изобрести подобный инструмент». Галилей изготавливает трубу из свинца, к концам которой он прикрепляет две линзы, «обе с одной стороны плоские, а с другой одна — выпуклая, а другая — вогнутая; приблизив глаз к вогнутой линзе, я заметил, что предметы значительно увеличены и кажутся ближе — в три раза ближе и в девять раз больше, чем они представляются нам, когда мы смотрим на них невооруженным глазом. После этого я изготовил другую трубу, более точную, которая увеличивала предметы в шестьдесят раз». Наконец, пишет Галилей, «не жалея труда и средств, я сконструировал столь превосходный инструмент, что с его помощью наблюдаемые предметы представляются в тысячу раз более крупными и более чем в тридцать раз ближе, чем если смотреть на них невооруженным глазом. Сколько и каковы преимущества, предоставляемые этим инструментом как на земле, так и на море, излишне перечислять». 25 августа 1609 г. Галилей представляет правительству Венеции этот аппарат как свое изобретение. Произведенное впечатление было столь сильным, что Галилею было предложено увеличение годового жалования от 500 до 1000 флоринов и сделано предложение о возобновлении контракта на преподавание, срок действия которого истекал в следующем году. Как заметил Васко Ронки, изобретение подзорной трубы голландцами или, еще раньше, итальянцами, или вторичное ее создание Галилеем сами по себе не представляют ничего исключительного. Что действительно интересно, так это то, что Галилей ввел подзорную трубу в научный обиход, использовав ее как инструмент для научных исследований, как средство усиления наших чувств. «Наиболь- 208 Научная революция ший интерес в этой истории (с подзорной трубой) — не в медленном и, если хотите, заурядном сотрудничестве умельцев, без особых усилий предоставивших в распоряжение человечества новый инструмент, но в логичном процессе изменения менталитета научного мира, который сначала знать не хотел об этом новшестве, а кончил тем, что признал в нем настоящее сокровище, превратив в один из мощных ресурсов познания мира» (В. Ронки). Философия средневековья не знала линз для очков: они будут изучены позже Франческо Мавроликом, но лишь Джамбаттиста делла Порта своей «Естественной магией» (1589) сделал линзы предметом не только ремесленников, но и философии. Как Порта, так и Кеплер (в работе «Добавления к Вителлию», 1604) «прошли рядом с подзорной трубой, даже написали кое-что, из чего можно заключить, что они почти открыли, но так и не сконструировали ее». Линзам не доверяли, думали, что они «обманывают», преобладало мнение, что данных нам Богом глаз достаточно, чтобы видеть, и нет необходимости в «усовершенствованиях». Кроме того, существовало глубокое предубеждение со стороны академических и церковных кругов по отношению к механическим искусствам. Еще долго выражение «низкий механик» будет расцениваться как оскорбление. 28 августа 1609 г., т. е. четыре дня спустя после презентации подзорной трубы Галилеем дожу Леонардо Донато, Порта написал из Неаполя письмо Федерико Чези, основателю академии Линчей: «Что касается секрета трубы, то это надувательство, все взято из моей книги «О рефракции», и я опишу его, и если Ваше Превосходительство захочет, чтобы она была сделана, то к Вашему удовольствию это будет исполнено». Величие Галилея, кроме прочего, заключается в преодолении эпистемологических барьеров, перекрывавших дорогу последующим исследованиям. Военных не смутило новшество, но просвещенная публика отказала в доверии подзорной трубе. Так, например, говорили, что получаемые с ее помощью образы малоубедительны. Галилей же уверяет Маттео Кароцио, что он испытывал свой телескоп «сто тысяч раз на сотне тысяч звезд и различных предметах». Наблюдение этих «различных предметов, — пишет Geymonat, — убеждало в точности инструмента; наблюдение звезд — доказательство его важности». И, что важно, поверил в научную ценность телескопа как решающего орудия в борьбе систем Птолемея и Коперника; поверил «в инструмент, рожденный в среде «механиков», совершенствуемый только практическим путем, отчасти при- Галилео Галилей 209 нятый в военных кругах, но неизвестный или даже презираемый академической и официальной наукой» (Паоло Росси). Друг Галилея Кремонини из Падуи, последователь Аристотеля, не захотел даже взглянуть на трубу («восхищение стеклами совсем заморочило мне голову; хватит, я не хочу больше ничего об этом знать»). Но Галилей навел трубу на небо, что нам покажется обыкновенным действием, разумным и нормальным, однако в те времена это было равносильно тому, как если бы в наши дни известный врач-клиницист стал использовать пиявки для лечения воспаления легких: для большей части ученых это было «неразумно». И когда Галилей увидел горы и долины на Луне, он сразу понял, что теперь возможно решительное беспрецедентное наступление против перипатетиков. Галилей превратил подзорную трубу из предмета, не имеющего никакого научного значения, в решающий элемент знания. В его руках или, скорее, в познавательных проектах она обретает качественно иное значение. В отличие от Кеплера Галилей верил (хотя для кого-то и неразумно) в подзорную трубу. Он видел в ней средство увеличения возможностей человеческих глаз: «Даже звезды, которые обычно недоступны нашему зрению из-за их малых размеров и слабости нашего зрения, можно увидеть с помощью этого инструмента». И еще: «Мы бы хотели... сделать наши глаза мерилом всех светил, так что если мы не видим какие-либо светящиеся объекты, то не следует ли сказать, что свет от них не доходит до нас А может, эти звезды видят орлы или рыси, а нашему слабому зрению они остаются недоступны» Недостаточно смотреть, «следует смотреть глазами, хотящими видеть, которые верят в то, что видят, и которые верят, что видят вещи, наделенные смыслом» (В. Ронки). «Звездный вестник» и подтверждение системы Коперника 12 марта 1610 г. Галилей издает в Венеции «Звездный вестник». В начале работы он пишет: «Велико значение вопросов, предлагаемых мной в этом кратком трактате вниманию и изучению исследователей природы. Велико как по исключительности самого материала, так и по его новизне, поскольку ранее эти вопросы никогда не поднимались, а также из-за инструмента, благодаря которому рассматриваемые предметы впервые открылись нашему взору». Темы, поднимаемые Галилеем в трактате, следующие: 1) добавление к множеству неподвижных звезд, видных и невооруженным глазом, «других многочисленных звезд, никогда ранее не замечаемых». Итак, все- 210 Научная революция Эпистемологические корни разногласия между Галилеем и Церковью Коперник утверждал, что «все сферы вращаются вокруг Солнца как центра, и поэтому центр Вселенной — вокруг Солнца». Он думал, что это истинное представление о Вселенной. Но во введении к работе «О вращениях» лютеранин Андрей Осиандер (1498—1552) утверждал: «...нет необходимости, чтобы эти гипотезы были верными или даже правдоподобными, достаточно одного: чтобы они предложили расчеты, соответствующие наблюдению». И Птолемей, теория которого приходила в столкновение с физикой Аристотеля, утверждал, что его гипотезы связаны с «математическими расчетами». Для Осиандера, как и для Птолемея, астрономические теории были только инструментами, предназначенными быстро прогнозировать движения небесных тел. Против инструменталистской интерпретации теории Коперника, данной Осиандером, резко выступает в «Пире на пепле» Джордано Бруно: Коперник не только «математик, который предполагает», но и «физик, доказывающий движение Земли»; и добавляет, что анонимное введение Осиандера «присоединено» к работе Коперника «каким-то невежественным и самонадеянным ослом». И для Кеплера «гипотезы Коперника не только не ошибоч- Галилео Галилей 213 ны относительно природы, но, наоборот, наиболее созвучны ей. Природа любит простоту и единство», и Копернику удалось «не только доказать прошлые движения, восходящие к далекой др 214 Научная революция претацию того или иного отрывка. В этом корень разногласий между Галилеем и Церковью. И в этом причина инструменталистской интерпретации учения Коперника, предложенной Беллармино и отвергнутой реалистом Галилеем. Реализм Галилея против инструментализма Беллармино Математик и теолог, кармелит Антонио Фоскарини (1565—1616) публикует в 1615 г. в Неаполе, где он преподавал философию и теологию, «Письмо о взглядах пифагорейцев и Коперника, в котором согласуются места из Священного Писания и теологические суждения, которые могли бы быть противопоставлены этим взглядам». Фоскарини посылает свой трактат Беллармино, прося выразить мнение о нем. Беллармино отвечает Фоскарини коротким письмом: «У Вас сейчас мало времени для чтения, а у меня — для письма». Это письмо — классический пример инструментализма. Беллармино напоминает Фоскарини о том, что «церковный Собор запрещает излагать Писание иначе, нежели отцы Церкви; и если Вы прочтете не только сочинения отцов Церкви, но и современных комментаторов Бытия, Псалтири, Книги Екклезиаста, Книги Иисуса Навина, то обнаружите, что все они сходятся во мнении о необходимости буквального толкования: Солнце находится в небе и вращается вокруг Земли с большой скоростью; Земля, будучи далеко от неба, расположена в центре мира и неподвижна. Теперь поразмыслите, со всем Вашим благоразумием, может ли Церковь допустить, чтобы Писанию придавался смысл, отличающийся от того, что видят в нем отцы Церкви и все толкователи, греческие и латинские». А с другой стороны, нельзя отрицать, «что это — предмет веры, ибо если не предмет веры со стороны слушающего, то это — предмет веры со стороны говорящего; и был бы еретиком тот, кто сказал бы, что Авраам не имел двух сыновей, а Иаков двенадцати, или кто сказал бы, что Христос рожден не от Девы — ибо и то и другое утверждает Святой Дух устами пророков и апостолов». Но этим дело не кончится, ведь предположив, что Земля вращается вокруг Солнца, «понадобится тщательно обдумать, как объяснить Священное Писание, которое окажется противоречащим этому, и легче признать, что мы его не понимаем, чем сознаться, что доказываемое ложно». «Что касается Солнца и Земли, ни одному благоразумному человеку не придет в голову исправлять ошибку, ведь очевидно, что Гапилео Галилей 215 Галилео Галилей 231 Галилеевский образ науки Так каков же в точности образ науки в представлении Галилея Какие ее характеристики можно извлечь из опытов и философско-методологических размышлений Галилея 1. Прежде всего наука, по Галилею, уже не знание на службе у веры; у них различные задачи и основы. Священное Писание несет послание о спасении души, и в его функции не входит определять «устройство небес и звезд». «Как попасть на небо», знает верующий. «Чувствующий опыт и необходимые доказательства» выявляет, «как перемещается небо». На основе разных целей (спасение души — для веры, познание — для науки) и различия в способах формулирования и восприятия (для веры — авторитет Писания и ответ человека на открывшееся ему послание; для науки — чувственный опыт и необходимые доказательства) Галилей разделяет научные суждения и суждения веры. «Мне кажется, что в размышлениях о природе оно [Писание] не играет важной роли». 2. Если наука независима от веры, тем более она должна быть независима от всех тех земных оков, которые — как вера в Аристотеля и слепая привязанность к его высказываниям — мешают ее развитию. «И что может быть постыднее, — говорит Сальвиати в «Диалоге о двух главнейших системах», — чем слышать во время публичных диспутов, как один зажимает рот другому, когда идет речь о доказанных заключениях, текстом, нередко написанным по совсем другому поводу. Но, господин Симплиций, выдвигайте доказательства, ваши или Аристотеля, а не цитаты и не голые авторитеты, потому что наши диспуты касаются мира чувственного, а не бумажного». 3. Наука независима от веры, она не имеет ничего общего с догмой, представленной аристотелевской традицией. Это, однако, не означает для Галилея, что традиция опасна сама по себе. Она опасна, когда вырастает до догмы, неконтролируемой, а следовательно, неприкосновенной. «Я не говорю, что не надо слушать Аристотеля, наоборот, я приветствую обращение к этому учению и его тщательное изучение и лишь осуждаю слепое принятие любого его высказывания, без каких бы то ни было попыток найти другие объяснения, принятие его как нерушимого установления; такая крайность влечет за собой другую крайность, отбивает стремление понять силу доказательств». Именно так случилось с одним последователем Аристотеля, который (зная из текстов Аристотеля, что нервы исходят из 232 Научная революция 236 Научная революция обстоит дело с идеей «совершенства» некоторых движений и форм. По мнению последователей Аристотеля, Луна не могла иметь гор и долин; они лишили бы ее той совершенной сферической формы, которая свойственна небесным телам. Однако Галилей обращает внимание на следующее: «Это суждение достаточно затерто перипатетическими школами, но я сомневаюсь в его действенности, хотя оно и укоренилось в головах людей, не будучи доказанным и необходимым; наоборот, я скорее склонен его считать нечетким и неопределенным. Прежде всего, я не уверен в том, что сферическая форма более или менее совершенна, нежели прочие. Об этом можно говорить лишь в определенных случаях, например, когда требуется способность вращаться во все стороны, сферическая форма является самой совершенной, и потому глаза и головки бедренных костей созданы природой совершенно сферическими; напротив, для тела, которое должно оставаться стабильным и неподвижным, такая форма будет самой несовершенной; и кто при строительстве стен станет пользоваться камнями сферической формы, поступит наихудшим образом, а совершенными будут здесь камни, имеющие углы». Таким образом, Галилей показывает бессмысленность понятия «абсолютного», в то же время он выявляет его действенность в эмпирическом плане, где оно становится относительным: идея «совершенства» работает только в «определенных случаях», т. е. с точки зрения определенной цели вещь более или менее совершенна, в зависимости от того, насколько она приспособлена к заранее поставленной цели. Проблема метода: «чувственный опыт» и (или) «необходимые доказательства» В письме к госпоже Христине Лотарингской Галилей пишет: «Мне кажется, что в диспутах о проблемах природы не следует начинать с авторитета Священного Писания, но с чувственного опыта и необходимых доказательств». А также: «Мне кажется, что природные явления, которые открывает перед нашими глазами чувственный опыт или в которых убеждают нас необходимые доказательства, никоим образом не должны быть подвергнуты сомнению или осуждены отрывками из Священного Писания, где, как представляется, говорится иначе. В этих фразах заключена суть научного метода по Галилею. Наука есть то, что она есть, т. е. объективное познание со всеми его специфическими чертами, которые мы уже анализировали Галилео Галилей 237 выше, именно потому, что она развивается на основе точного метода, именно потому, что утверждает и обосновывает свои теории посредством правил, составляющих научный метод. А он, по мнению Галилея, состоит в «чувственном опыте» и «необходимых доказательствах». Первое — это опыт, обретаемый чувствами, в наблюдениях, особенно визуальных; второе — это аргументы некоторой гипотезы (например, физико-математического определения равномерного движения), из нее выводятся следствия, которые подлежат проверке. И как Галилей пытался с помощью подзорной трубы усилить и усовершенствовать природное зрение, так, особенно в преклонном возрасте, он признавал, что Аристотель в «Диалектике» учил нас быть «осторожными и избегать ошибок в рассуждениях», устами Сальвиати Галилей говорит: «Логика — это органон философии». Итак, с одной стороны, призыв к наблюдениям, фактам, «чувственному опыту», а с другой — подчеркивание роли «математических гипотез» и логической силы, с помощью которой из них извлекаются следствия. Но вот проблема, о которую споткнулись ученые: каково соотношение «чувственного опыта» и «необходимых доказательств» Типичная для философии, эта проблема стоит перед Галилеем. Основывая науку на опыте, Галилей ссылается на Аристотеля, который «предпочитает... чувственный опыт всем рассуждениям»; и сам Галилей недвусмысленно заявляет: «То, что показывают опыт и чувства, следует предпочитать любому рассуждению, хотя бы оно и казалось нам хорошо обоснованным». Однако несмотря на эти четкие заявления, иногда кажется, что Галилей предпочитает опыту рассуждение и подчеркивает важность «предположений» в противовес наблюдениям. Так, например, в письме от 7 января 1639 г. к Джованни Баттиста Балиани он пишет: «Но, возвращаясь к моему трактату о движении, доказательство по поводу движения определено ex suppositione, и если выводы не будут соответствовать случаям природного движения, для меня это не имеет существенного значения, поскольку ничто не нарушает доказательств Архимеда, что в природе нет ничего, что бы двигалось по спирали». Итак, проблема: с одной стороны, Галилей основывает науку на опыте, с другой — кажется, что он осуждает опыт от имени «рассуждения». В этой ситуации мнения интерпретаторов и исследователей научного метода разделились. Некоторые увидели в «чувственном опыте» и «точных доказательствах» антитезу опыта и рассуждения; другие, не видя антитезы, считают, что таким образом Галилей 238 Научная революция 242 Научная революция по собственному рисунку и что он должен идти вперед и заставить природу ответить на его вопросы; и не допускать, чтобы она понукала им, так сказать, с помощью вожжей; иначе наши наблюдения, сделанные случайно и без заранее выработанного рисунка, не привели бы к необходимому закону, в котором нуждается и разум». Система мира, методология и философия в творчестве Исаака Ньютона Философское значение творчества Ньютона Галилей умер 8 января 1642 г. В том же 1642 г. на Рождество, в Вулсторпе, в окрестностях деревни Колстерворт, Линкольншир, родился Исаак Ньютон. Ньютон завершил научную революцию, и с его системой мира обретает лицо классическая физика. Но не только астрономические или оптические, а также математические открытия (он, независимо от Лейбница, изобрел дифференциальное и интегральное исчисление) обессмертили его имя. Ньютон занимался также актуальными теологическими проблемами, вырабатывая точную методологическую теорию. Без правильного понимания идей Ньютона мы не сможем понять вполне ни значительной части английского эмпиризма, ни Просвещения, особенно французского, ни самого Канта. Действительно, как мы увидим ниже, «разум» английских эмпириков, лимитируемый и контролируемый «опытом», без которого он уже не может свободно и по желанию перемещаться в мире сущностей, — это «разум» Ньютона. Вольтер, побывав в Англии, «увидит, что там граждане могут стремиться к любой должности, что свобода не порождает несовместимости с порядком, религия терпимо относится к философии. Чтение сочинений Локка даст сведения по философии, чтение Свифта — модель, чтение Ньютона — научную доктрину» (А. Моруа). «Разум» деятелей эпохи Просвещения — это «разум» эмпирика Локка, образец которого в науке Бойля и физике Ньютона; последняя не теряется в гипотезах о внутренней природе или сущности явлений, но, постоянно контролируемая опытом, ищет и испытывает законы их функционирования. Наконец, мы не должны забывать, что «наука», о которой говорит Кант, — Исаак Ньютон 243 это наука Ньютона, и что пиетет Канта перед «звездными небесами» — это восхищение порядком вселенной как часов Ньютона; Кант верил, что обязанность философа — объяснить уникальность и истинность теории Ньютона. Без понимания образа науки Ньютона поистине невозможно понять «Критику чистого разума» Канта (К. Поппер). Наиболее знаменитое сочинение Ньютона — «Математические начала натуральной философии» впервые издано в 1687 г. «Опубликование «Начал...» было одним из наиболее важных событий во всей физике. Эту книгу можно считать кульминацией тысячелетних усилий понять динамику вселенной, физику движущихся тел» (I. В. Cohen). И «в той мере, в какой непрерывность развития мысли позволяет нам говорить о подведении итогов и о новой отправной точке, мы можем сказать, что с Исааком Ньютоном классическая наука... обрела независимое существование и с этих пор начала оказывать значительное влияние на человеческое общество. Если кто-нибудь решил бы описать это влияние в его многочисленных разветвлениях... Ньютон стал бы отправной точкой: все, что сделано раньше, было лишь введением» (Е. J. Dijksterhuis). Жизнь и творчество Исаак Ньютон родился в 1642 г. В 1661 г. он поступил в колледж Св. Троицы в Кембридже, где нашел поддержку у преподавателя математики Исаака Барроу (1630—1677), автора известных «Лекций по математике» и сочинений по греческой математике. Барроу оценил выдающиеся способности своего ученика, который очень быстро овладел всеми основными математическими знаниями. К концу обучения Ньютон постиг исчисление бесконечно малых величин и использовал его при решении некоторых проблем аналитической геометрии. Он передал тетрадь со своими заметками Барроу и некоторым друзьям для прочтения. В 1665 г. на два года из-за чумы Ньютон, как и многие другие преподаватели и студенты, вынужденно покидает Кембридж. Он вернулся в Вулсторп, в маленький каменный домик, уединенно расположенный в сельской глуши, чтобы предаться там размышлениям. Ньютон в старости так вспоминал о своей необычной работе в Вулсторпе: «Все это произошло в два чумных года, 1665 и 1666, потому что в это время я находился в самой творческой форме и занимался математикой и философией больше, чем когда 244 Научная революция Исаак Ньютон 245 Исаак Ньютон их результатов. Он продолжал писать лекции, которые были опубликованы в 1729 г. под названием «Лекции по оптике», а также лекции по алгебре, увидевшие свет в 1707 г. под названием «Всеобщая арифметика». В начале 1684 г. известный астроном Эдмунд Галлей (1656—1742) встретился с сэром Кристофером Реном (1632—1723) и Робертом Гуком (1635—1703) с тем, чтобы обсудить проблему движения планет. Гук утверждал, что законы движений небесных тел следуют закону силы, обратно пропорциональной квадрату расстояния. Рен дал Гуку два месяца на формулировку доказательства закона. Но Гук пренебрег этим поручением. В августе Галлей отправился в Кембридж, чтобы узнать мнение Ньютона. На вопрос Галлея, какой должна быть орбита планеты, притягиваемой Солнцем с гравитационной силой, обратно пропорциональной квадрату расстояния, Ньютон ответил: «Эллипс». Обрадованный Галлей спросил у Ньютона, как ему удалось это узнать. Ньютон отвечал: после соответствующих расчетов. Тогда Галлей попросил показать ему эти расчеты, но Ньютон не смог найти их и пообещал прислать позже, что и сделал. Кроме того, он написал работу «О движении тел», которую послал Галлею. Последний сразу понял важность работы Ньютона и убедил его написать и обнародовать трактат. Так появился самый большой шедевр в истории науки — «Математические начала натуральной философии». Ньютон принялся за работу в 1685 г. В апреле 1686 г. он направил рукопись первой части в Королевское общество, в протоколах 246 Научная революция Исаак Ньютон 247 «Правила философствования» и «онтология», которую они предполагают В третьей книги «Начал...» Ньютон устанавливает четыре «правила философского рассуждения». Речь идет, конечно, о методологических правилах. Поскольку правила, показывающие, как искать, предполагают, что мы знаем, что должны искать, они переплетены с тезисами метафизического порядка о природе и структуре вселенной. «Правило I. Не следует допускать причин больше, чем достаточно для объяснения видимых природных явлений». Это первое методологическое правило есть принцип экономии в использовании гипотез, аналог бритвы Оккама в отношении объяснительных теорий. Но почему мы должны поставить себе целью выработку простых теорий; почему не должны усложнять гипотетический аппарат наших объяснений Ответ Ньютона таков: «Природа ничего не делает напрасно, и излишне делать с помощью многого то, что можно сделать малым; ведь природа проста и не роскошествует излишними причинами вещей». Онтологический постулат простоты природы утверждает первое методологическое правило Ньютона. С первым правилом тесно связано правило II. «Одни и те же явления мы должны, насколько возможно, объяснять теми же причинами. Например, дыхание человека и животного; падение камней в Европе и в Америке; свет от огня в кухне и свет от Солнца; отражение света на Земле и на планетах». Это правило выражает второй онтологический постулат — единообразие природы. Никто не может контролировать отражение света на планетах, но на основании того факта, что природа ведет себя схожим образом на Земле и на других планетах, мы можем сказать это же и о природе света. «Правило III. Свойства тел, не допускающие ни постепенного увеличения, ни постепенного уменьшения и проявляющиеся во всех телах в пределах наших экспериментов, должны рассматриваться как универсальные». Это правило также базируется на онтологическом постулате единообразия природы. Ньютон пишет: «Поскольку мы узнаём о свойствах тел только посредством экспериментов, мы должны считать универсальными все те свойства, которые в экспериментах носят устойчивый характер, и те, которые не могут быть ни уменьшены, ни устранены. Конечно, мы не должны отказываться от очевидных экспериментов ради мечтаний и пустых фантазий нашего созерцания и пренебрегать аналогиями в природе, которая 248 Научная революция 254 Научная революция ческом аспекте» абсолютное пространство и абсолютное время Ньютона «концептуальными чудовищами». Внутри абсолютного пространства, которое Ньютон называет также sensorium Dei, соединение тел осуществляется по закону всемирного тяготения, изящно изложенному в третьей книге «Начал...». После краткого изложения содержания двух первых книг Ньютон заявляет, что на основе тех же самых принципов он намерен теперь продемонстрировать структуру мировой системы, и делает это далее с такой скрупулезностью, что сделанное в науке в последующие двести лет наиболее выдающимися умами можно считать расширением и обогащением его труда. Закон гласит, что сила F взаимного притяжения материальных точек с массами m1 и m2, находящихся на расстоянии D друг от друга, равна F=G●m1●m2D2, где G — гравитационная постоянная. С помощью закона всемирного тяготения Ньютон приходит к единому принципу объяснения бесконечного множества явлений. Сила, притягивающая к земле камень или яблоко, имеет ту же природу, что и сила, удерживающая Луну близ Земли, а Землю — близ Солнца; присутствием той же силы объясняются приливы — как комбинированный эффект притяжения Солнца и Луны, воздействующий на массу морской воды. На основе закона тяготения «Ньютон смог объяснить движения планет, их спутников, комет вплоть до малейших деталей, а также приливы и отливы — труд, уникальный по своей грандиозности» (А. Эйнштейн). Из него «вырисовывается единая картина мира и реальный прочный союз физики земной и физики небесной. Окончательно рухнули догмы о существенном различии между землей и небесами, механикой и астрономией, разбился «миф о круговом движении», сковывавший в течение более чем тысячи лет развитие физики и даже ход мыслей Галилея. Небесные тела движутся по эллиптическим орбитам, ибо на них воздействует некая сила, постоянно уклоняющая их от прямой линии, по которой они бы продолжали свое движение по инерции» (Паоло Росси). Механика Ньютона как программа исследований В конце «Общего поучения» Ньютон предлагает четкую «программу исследований»: с помощью силы тяготения она объяснит не только Исаак Ньютон 255 Исаак Ньютон (тексты) 259 методе Евдокса Книдского (408—355 до н. э.) и с успехом применялась Евклидом и Архимедом для решения различных геометрических проблем. Однако строгое применение понятия на основе анализа бесконечно малых величин мы обнаружим лишь в XIX в. у Бернарда Больцано (1781 —1848) и у Огюстена Луи Коши (1789— 1857). Работа Лейбница написана примерно в 1672—1673 гг., следовательно, позже или по крайней мере одновременно с трудом Ньютона. Однако публикация его основного труда «Новый метод максимумов и минимумов, а также касательных» относится к 1684 г., т. е. на три года раньше публикации «Математических начал натуральной философии» Ньютона. Между Ньютоном и Лейбницем вспыхнул ожесточенный спор о приоритете открытия, но не станем на нем останавливаться. Ньютон (тексты) Четыре правила экспериментального метода 1. Для объяснения природных явлений не следует допускать к рассмотрению причин сверх тех, что считаются истинными и достаточными. Философы говорят, что природа ничего не делает понапрасну, а излишне все то, что сверх необходимого. Природа склонна к простоте и не выносит гнета излишних причин. 2. Поэтому тем же естественным результатам мы должны, насколько это возможно, приписать соответствующие причины. Например, дыхание у человека и животных, падение камня в Европе и Америке, свет огня на кухне и от Солнца, отражение света на Земле и других планетах. 3. Качества тел, не допускающие возрастания или уменьшения по степени, принадлежащие всем телам, данным в области наших экспериментов, следует рассматривать как всеобщие. Поскольку о телесных качествах мы знаем лишь из экспериментов, то всеобщими будут те, которые универсально согласуются с опытными данными. Мы не должны уклоняться от очевидности экспериментов, чтобы увлечься снами и изобретенными нами фикциями. Нельзя удаляться от природного сходства, ибо природа проста и согласна с собой. Протяженность тел мы ощущаем не иначе, как посредством чувств, поскольку мы наблюдаем все тела как протяженные, то приписываем это свойство всем 260 Научная революция телам как универсальное. Из опыта знаем, что некоторые тела тверды, но поскольку твердость целого исходит из твердости частей, мы выводим, что плотны частицы не только тел, которые трогаем, но и всех прочих. Вывод, что тела непроницаемы, мы получаем из разума, а не из чувств. Из непроницаемости известных нам в опыте тел мы делаем вывод о непроницаемости как об универсальном свойстве всех тел... Протяженность, плотность, непроницаемость, подвижность и инертность в целом проистекают из соответствующих свойств частей тел, поэтому мы делаем вывод, что минимальные частицы тел также протяженны, плотны, непроницаемы, подвижны и наделены силой инерции. Вот основание всей философии. То, что частицы могут быть разделены, мы знаем из опыта. Даже в неделимых частицах наш ум способен выделить еще более мелкие, это доказывается математически. Однако мы не можем точно установить, можно ли силами самой природы разделить то, что пока существует в нераздельном виде. Если у нас появится хоть одно доказательство того, что неделимая частица делится при распаде плотного тела, то, ссылаясь на него, мы сможем сказать, что делимые и неделимые частицы можно реально делить до бесконечности. Из опытов и астрономических наблюдений следует, что все околоземные тела тяготеют к земле, пропорционально весу, количеству материи. Так, Луна, согласно своему весу, тяготеет к Земле, а наше море тяготеет к Луне, планеты — друг к другу, кометы — к Солнцу. Так, обобщая, можно сказать, что все тела наделены взаимообразно силой тяготения. Относительно небесных тел других, кроме феноменальных, доказательств у нас нет. Я не утверждаю, что сила тяготения существенна для всего телесного. Говоря о vis insita, я указываю на их инерцию, которая неизменна. Их сила тяготения растет по мере удаления от Земли. 4. В экспериментальной философии следует рассматривать положения, разработанные для общей индукции из точных или весьма приближенных феноменов, пока не появится другая, противоположная гипотеза для более точного объяснения других феноменов и исключений. Следует держаться этого правила, пока индуктивное доказательство не будет гипотетически исчерпано. Ньютон, Philosophiae naturalis principia mathematica. Исаак Ньютон (тексты) 261 262 Научная революция постольку, поскольку любое суждение о Боге происходит из человеческого по сходству. Так и задача естественной философии — говорить, отталкиваясь от феноменов. Ньютон, Philosophiae naturalis principia mathematica. Науки о жизни Развитие анатомических исследований В XVI в. наблюдается бурный расцвет анатомических исследований. Наиболее известные ученые в этой области знаний: Андреас Везалий (1514—1564), Мигель Сервет (1509—1553), Габриэль Фаллопий (1523—1562), Реальдо Коломбо (ок. 1516—1559), Андреа Чезальпино (1529—1603) и Фабриций ди Аквапенденте (1533—1619). В том же году, когда Николай Коперник опубликовал работу «Об обращениях», Везалий, фламандец по происхождению, профессор из Падуи, отдал в печать работу «О строении человеческого тела». Эта книга, основанная на личных наблюдениях автора, «была первым скрупулезным описанием человеческой анатомии из когда-либо известных человечеству» (А. Азимов). Она разошлась по всей Европе в тысячах экземпляров. Книга была прекрасно иллюстрирована; некоторые рисунки выполнены Яном Стевензооном ван Калькаром, учеником Тициана. Гален утверждал, что кровь перетекает из правого желудочка сердца в левый через разделительную перегородку, называемую мембраной. Везалий возразил Галену, что сердечная мембрана плотная и имеет мускулистую природу. Во втором издании своего труда (1555) он уже открыто заявляет, что кровь не может проникнуть через мембрану: «До недавних пор я бы не осмелился даже на волосок отступить от мнения Галена. Но мембрана так же плотна, как и остальная часть сердца. Поэтому я не могу понять, как даже самая маленькая частичка может проникнуть из правого желудочка сердца в левый». Везалию не удалось объяснить движение крови в теле человека. Мигель Сервет, религиозный реформатор (в 1553 г. был отправлен на костер Кальвином), познакомившийся с Везалием в Париже, предположил, что кровь попадает из правого резервуара в левый через легкие. После Сервета Реальдо Коломбо (также профессор анато- Уильям Гарвей 263 мии в Падуе) выдвинул идею, что дыхание скорее процесс очищения крови, а не процесс охлаждения. В работе «Восстановление христианства» (ее сожгли вместе с автором, Серветом; сохранились только три экземпляра: в Париже, Вене и Эдинбурге) мы читаем: «Кровь направляется от легочных артерий к легочным венам по длинному пути через легкие; по мере прохождения этого пути она становится кармазинного (ярко-красного) цвета», «очищаясь от прокопченных паров при выдыхании». Реальдо Коломбо в книге «Об анатомии» пишет: «Кровь попадает в легкие через артериальную вену; смешавшись с воздухом, она проходит через венозную артерию к левому сердцу». Анатом, ботаник и минералог Андреа Чезальпино, профессор анатомии в Пизе и Падуе, утверждал, вопреки доктрине Галена, что кровеносные сосуды берут свое начало от сердца, а не от печени, что кровь проникает во все части тела. В Падуе работал также Фабриций ди Аквапенденте, анатом и эмбриолог, занимавшийся изучением венозных клапанов, но к кровообращению он так и не пришел. Фаллопий, продолжая традицию Везалия, описал каналы, ведущие от яичников к матке, и по сей день они именуются фаллопиевыми трубами. А Бартоломео Евстахий (ок. 1500—1574), противник Везалия и последователь Галена, изучал, среди прочего, проток, ведущий от уха к горлу, который теперь называется евстахиевой трубой. Уильям Гарвей: открытие кровообращения и биологический механицизм Такова картина развития анатомии в XVI в. Однако анатомические исследования претерпели значительные изменения, когда Уильям Гарвей (1578—1657) опубликовал в 1628 г. работу «О движении сердца», где изложена теория кровообращения. Речь идет о революционном открытии, по крайней мере, по трем причинам. Прежде всего оно знаменует собой конец галеновой традиции; во-вторых, были заложены основы экспериментальной физиологии; в-третьих, теория кровообращения, воспринятая Декартом и Гоббсом, стала одной из наиболее прочных опор механицистской парадигмы биологии. И хотя Гарвей и говорит, что «сердце можно... считать основой жизни и солнцем микрокосма», он систематизирует результаты предыдущих анатомических исследований в пределах строго механистской модели: Таково истинное движение крови... кровь из левого желудочка сердца выталкивается и распределяется через артерии внутри 264 Научная революция Уильям Гарвей организма, в каждую из его частей, а обратно, через вены кровь стекается через полую вену к правому желудочку. Пульсациями правого желудочка кровь выталкивается в легкие через легочную артерию. От легких кровь стекается в левое предсердие, далее, в левый желудочек... Сердце воспринимается как насос, вены и артерии — трубы, кровь — как жидкость, движущаяся под давлением, а венозные клапаны осуществляют ту же функцию, что и клапаны механические. Опираясь на эту механистическую модель, Гарвей опроверг французского врача Жана Фернеля (1497— 1559). Анатомируя трупы, Фернель увидел, что артерии и левый желудочек сердца пусты, и заявил в работе «Всеобщая медицина» (1542), что эти пространства заполняло «эфирное тело», жизненный «дух», исчезавший со смертью человека. Гарвей пишет: «Фернель, и не только он, утверждает, что эти духи — невидимые субстанции. Необходимо сказать, что мы в ходе анатомических исследований ни разу не обнаружили никакого духа ни в венах, ни в нервах, ни в какой другой части организма». Теория Гарвея представляет собой важный вклад в механистическую философию. Декарт распространит на все живые существа идею (уже высказанную Леонардо и присутствующую у Галилея), что живой организм — это разновидность механизма. Она ляжет в основу исследований Альфонсо Борелли (1608—1679), члена академии Чименто, профессора математики в Пизе, автора большого труда «О движении животных», опубликованного после его смерти в 1680 г. Борелли изучал статику и динамику тела, рассчитывая силу, разви- Франческо Реди 265 ваемую мускулами при ходьбе, беге, прыжках, поднятии тяжестей, внутренних движениях сердца. Он выявил мускульную силу сердца и скорость крови в артериях и венах. Согласно Борелли, сердце функционирует, как цилиндр с клапанами, а легкие — как два меха. Теми же средствами Борелли проанализировал полет птиц, плавание рыб и скольжение червей. Франческо Реди против теории самозарождения Другим известным членом академии Чименто стал аретинец Франческо Реди (1626 —1698), который выступил с решительной критикой теории самозарождения. В работе «Опыты о размножении насекомых» Реди пишет: «По мнению древних и современных ученых, всякий гниющий и разлагающийся труп или грязь иного рода порождает червей; поэтому я, решив выяснить истину, в начале июня попросил умертвить трех змей из тех, которых называют змеями Эскулапа; мертвых их я поместил в открытый ящик, с тем чтобы они там разлагались: прошло немного времени, и я увидел, что они все покрыты червями конусной формы без единой ноги насколько можно было увидеть глазами, и эти черви, пожирая мясо, росли на глазах». Тем самым Реди словно бы подтверждает теорию самозарождения. Но далее он пишет, что, повторяя эксперимент, он «почти всегда видел на мясе, рыбе и вокруг... не только червей, но и личинки, из которых выводятся черви. Эти личинки появлялись из испражнений мух, оставляемых на рыбе или мясе. Это уже было отмечено и составителями словаря нашей Академии, и охотниками на диких зверей, и мясниками, и домохозяйками, которые, чтобы предохранить летом мясо от всякой дряни, кладут его под сетку от мух или покрывают куском белой ткани. Великий Гомер в девятнадцатой книге «Илиады» описывает опасения Ахилла, когда он собирался отомстить Гектору за смерть друга: как бы мухи не развели червей в ранах мертвого Патрокла... И сердобольная мать пообещала ему, что, с божьей помощью, она не допустит к телу Патрокла полчища несущих нечистоты мух, и вопреки законам природы она сохранит его целым и невредимым в течение года... Вот почему, — продолжает Роди,— я начал сомневаться и думать, не из яиц ли мух появляются черви, а не из самого прогнившего мяса, и я тем более утверждался в своем мнении, когда во всех своих опытах видел, что на мясо, прежде чем оно покрывалось червями, всегда садились такие же мухи, которые потом рождались. Но сомнение было бы 266 Научная революция 271 Часть 4. БЭКОН И ДЕКАРТ. РАЗВИТИЕ ФИЛОСОФСКОЙ МЫСЛИ В ТЕОРЕТИЧЕСКОМ И СОЦИАЛЬНОМ АСПЕКТАХ В СРАВНЕНИИ С НАУЧНОЙ РЕВОЛЮЦИЕЙ   Если я воздерживаюсь от суждения о чем-либо, когда понимаю недостаточно ясно и отчетливо, то, очевидно, не обманываюсь; но если я ограничиваюсь отрицанием или утверждением, в этом случае я отказываюсь от свободы мыслить, а это не подобает. Рене Декарт   272
1   ...   5   6   7   8   9   10   11   12   ...   29

  • Тихо Браге отрицает существование материальных сфер
  • Ни Птолемей, ни Коперник
  • Система Тихо Браге: реставрация с семенами революции
  • Иоган Кеплер: переход от «круга» к «эллипсу» и математическая систематизация теории Коперника
  • Кеплер — придворный математик в Праге: «Новая астрономия» и «Диоптрика»
  • «Космографическая тайна»: в поисках божественного математического порядка небес
  • Галилей и вера в подзорную трубу
  • «Звездный вестник» и подтверждение системы Коперника
  • Эпистемологические корни разногласия между Галилеем и Церковью
  • Реализм Галилея против инструментализма Беллармино
  • Галилеевский образ науки
  • Проблема метода: «чувственный опыт» и (или) «необходимые доказательства»
  • Система мира, методология и философия в творчестве Исаака Ньютона
  • «Правила философствования» и «онтология», которую они предполагают
  • Механика Ньютона как программа исследований
  • Развитие анатомических исследований
  • Уильям Гарвей: открытие кровообращения и биологический механицизм
  • Франческо Реди против теории самозарождения
  • Часть 4. БЭКОН И ДЕКАРТ. РАЗВИТИЕ ФИЛОСОФСКОЙ МЫСЛИ В ТЕОРЕТИЧЕСКОМ И СОЦИАЛЬНОМ АСПЕКТАХ В СРАВНЕНИИ С НАУЧНОЙ РЕВОЛЮЦИЕЙ